National Air Compliance Training Program


MACT 290
Maximum Achievable
Control Technology

(MACT)

COURSE OVERVIEW

- · HISTORY
- ·CAA section 112
- · MACT TIMELINE
- · GENERAL / SPECIFIC
- INFORMATION RESOURCES

Big MACT

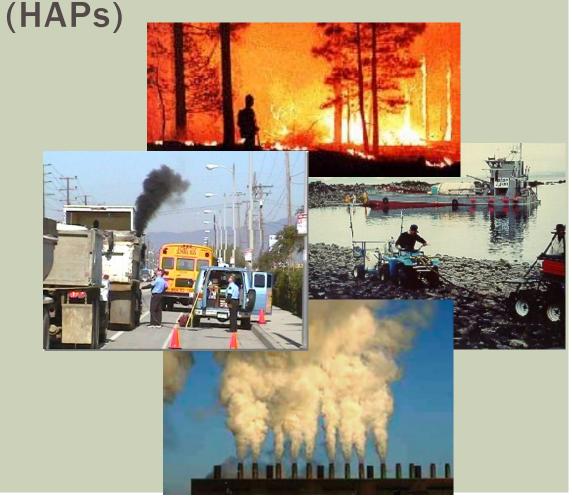
NUMBERS GAME

- ■188 Hazardous Air Pollutants (HAPs)
- ■174 Source Categories
- 68 Area Sources Regulated
- 125 Total promulgated MACTs
- All requiring periodic updates
- Each MACT = 75 587 pages
 WOW!

A LITTLE HISTORY

Four Sources Hazardous Air Pollutants (HAPs)

- Natural Sources
 - Forest fires, Volcanoes
- Mobile Sources
 - Planes, Trains, Automobiles
- Accidental Releases
 - Factory or Tanker mishaps
- Stationary Sources
 - Factories, Businesses



A plant in Donora, Pa., belches clouds of smoke in 1948. The photo is part of the exhibition at the town's smog museum.

A LITTLE HISTORY

Regulating Four Sources Hazardous Air Pollutants

- Natural Sources
- Mobile Sources
 - Regulated Tailpipe Emissions
 - Reformulated Gasoline
 - Vapor Recovery
- Accidental Releases
 - Risk Management Programs
- Stationary Sources
 - 1970 Clean Air Act

REMEMBER 1970

1970 CLEAN AIR ACT

US EPA

Identify HAPs

Reduce emissions

Set emission standards (NESHAPs)

1970 CLEAN AIR ACT

US EPA

■Establish NESHAPs

- Through NESHAPs reduce routine HAP emissions
- NESHAP = National Emission Standards for Hazardous Air Pollutants

DID IT WORK?

Eight in 20

Eight HAPs promulgated in 20 years !!

REMEMBER 1990?

1990 CLEAN AIR ACT AMENDMENTS

Seven Major Titles

Title I - Non attainment

Title II - Mobile Sources

Title III - General

Title IV - Acid Rain

1990 CLEAN AIR ACT AMENDMENTS

Seven Major Titles (cont.)

Title V - Permits

Title VI - Ozone Depleting Substances

Title VII - Enforcement

1990 CAAA

40 CFR Part 63

Technology and performance based

- Reduce HAP emissions
 - Major Sources
 - Area sources

TITLE I 1990 CAAA

40 CFR Part 63

- Identified 181 HAPs
 - IARC International Association for Research on Cancer

Rule development Timeline

THE REGULATIONS

1990 CAAA

- Modified 1970 CAA Title I
- **§112**

THE REGULATIONS

1970 CAA

- Title I
 - Modified by 1990 CAAA
- Section 112 (a thru r)
 - Created by 1990 CAAA

THE REGULATIONS

40 CFR Part 63

Section 112 Codified

Citation Numbers

SEC 112

- a Definitions
- b List of HAPs and their control
- c List of Source Categories
- d Emission Standards
- e Schedule for Standards and Review
- f Standard to protect Public Health
- g Modifications
- h Work practices
- I Schedule of compliance

SEC 112 (CONT.)

- j Equivalent Limitation of permit
- k Area source program
- I State programs
- m Deposition
- n Other provisions
- o National Academy of Sciences Study and guidance
- p Air Toxic Research Center
- q Savings provision
- r Accidental Releases

CLEAN AIR ACT SECTION 112

Section 112 Hazardous Air Pollutants

- 112 a) Definitions
- 112 b) Pollutants
- 112 c) Source Categories

CLEAN AIR ACT SECTION 112

Section 112 Hazardous Air Pollutants

- 112 d) Standards (MACT)
 - **♦ MACT Floor**
- ♦ 112 e) Schedule
- 112 f) Standard to protect Public Health
- 112 h) Work Practice Standards and other requirements

CLEAN AIR ACT SECTION 112

Section 112 Hazardous Air Pollutants

- 112 j) Equivalent Limitation by Permit (MACT Hammer)
- 112 k) Area Source Program
- 112 r) Prevention of accidental releases

112 (a) DEFINITIONS

Major Source

- Potential To Emit (PTE)
 - 10 tons per year any HAP
 - 25 tons per year any combination of HAPs

112 (a) DEFINITIONS

Area Source

- Potential To Emit (PTE)
 - Less than 10 TPY. Single HAP
 - Less than 25 TPY Mixture HAPs
 - Collective emissions

POTENTIAL TO EMIT (PTE)

Potential to Emit – The maximum capacity of a stationary source to emit pollutant(s) under its physical and operational design. Any physical or operational limitation on the capacity of the source to emit pollutant(s) including air pollution control equipment and hours of operation or on the type, or amount of material combusted, or stored, or processed shall be treated as part of its design if the limitation or the effect it would have on emissions is federally enforceable.

Section 112 Glossary of terms - Aug 1998

POTENTIAL TO EMIT (PTE)

1994 – Maximum capacity to emit federally enforceable

1996 Enforceable by state and local agencies

POTENTIAL TO EMIT (PTE)

Emitting 24 hrs, 365 days

Permitting Agency may consider limitations

Policy documents

112 (b) HAPS

188 Hazardous Air Pollutants

- **Examples:**
 - -Benzene (gasoline)
 - -Perc (Dry Cleaning)
 - -Dioxin

112 (b) HAPS

188 Hazardous Air Pollutants

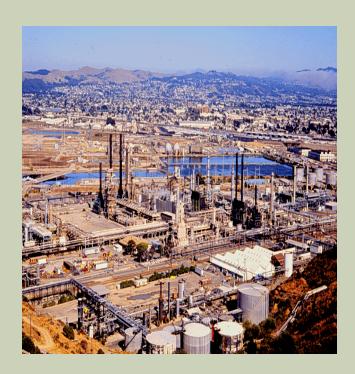
- **Examples:**
 - -Benzene (gasoline)
 - -Perc (Dry Cleaning)
 - -Dioxin
 - -Toluene

112(c) SOURCE CATEGORIES

174 Categories

- Major
 - -Petroleum and Natural Gas Prod & Refining
 - Waste Treatment Disposal
- Area
 - Electroplating
 - Glassware Manufacturing

112 (d) MACT STANDARD



112 (d) MACT STANDARD

- Based on emission levels of better controlled, lower-emitting sources
- Standards to control routine HAP emissions from major facilities in a "source category" (industry group)

HOW MACT STANDARDS ARE DEVELOPED

- Based on emission levels achieved by best facilities through Control Techniques
 - (A) process changes
 - substitution of materials
 - (B) enclosure
 - (C) collect, capture, treat
 - (D) design
 - equipment
 - work practice
 - operational standards
 - (E) combination of above

CONTROL TECHNIQUES:

Control Devices

- Enclosed Systems
- Collection, Capture and Treatment of Emissions
- Equipment Design

CONTROL TECHNIQUES:

Work Practices

- Material Substitutions
- Materials Handling
- Operational Standards

HOW MACT STANDARDS ARE DEVELOPED

- Set a baseline called "MACT Floor"
- States and Districts can set standard more stringent than the MACT Floor

MACT FLOOR

Existing Sources

- 30 or more average of best 12%
- Less than 30 average of 5 best

MACT FLOOR

New Sources

Standard is percent reduction of emissions or concentration limit

CAA §112(d)

- Area sources—in lieu
 - Generally Available Control Technologies

CAA 112 (H) WORK PRACTICE STANDARDS

If no other HAP control standard is feasible?

Design, equipment, work practice or Operational standard may be adopted

A NUMERICALSTANDARD ISREQUIRED!(when feasible)

Equivalent Emission Limitation by Permit

- Case-by-case MACT determination if EPA misses rule promulgation schedule
- Incorporate MACT standard into Title V permit
- Title V permit due 18 months from scheduled promulgation date

CAA 112 (J) MACT HAMMER

- November 15, 2000 Promulgation Deadline
 - Over 60 MACTs not promulgated
 - Hammer date: May 15, 2002
- EPA Changes final Rule
 - 2 part process
 - Part 1: Notification
 - Part 2: Permit
 - 2 yrs between parts 1 & 2

CAA 112 (J) MACT HAMMER

- Sierra Club Sues US EPA
 - Want 12 months between Parts 1 & 2
- Settled out of Court
- 12 months between Parts 1 & 2
- Extended Promulgation Dates for MACTs
- EPA met all Promulgation Dates

CAA 112 (K) AREA SOURCE PROGRAM

- Affects all non-Major Sources
- 75% Reduction in cancer risk
- Substantially reduce noncancer health effects like birth defects
- Address hotspots

112 (K) AREA SOURCE PROGRAM

- Identify 30 Haps which present largest threat to public health in largest number of urban areas
- Benzene (gas stations)
- PERC (dry cleaning)
- Cr⁶ (Chrome plating)

112 (K) AREA SOURCE PROGRAM

- **68** Area Sources subject to standards
 - Municipal Landfills
 - Medical Waste Incinerators
 - -Stationary internal Combustion Engines
 - Hospital Sterilizers

112 (K) AREA SOURCE PROGRAM

Integrated Urban Air Toxics Strategy

Generally available Control Technologies (GACT) or Management practices November Docket

Area Source Categories with Percentage Contribution to each of the 30 urban HAP

11/22/2002

November Docket	Area Source	Cale	gone	3 1111		Cent	age	COIII	IIDUL	OII to	cuc	0		uibu		٠,											1 1/2	22/2(302
Source Category Name	Group Responsible	1,12,2-Tetrachloroethan	1,2-Dichloropropane	I,3 Butadiene	1,3-Dichloropropene	7-РАН	Acetaldenyde	Acrylonitrile	Arsenic Compounds	Benzene	Beryllium Compounds	Cadmium Compounds	Chromium Compounds		e Dich	Ethylene Oxide	Formaldehyde	Hexachlorobenzene	-lydrazine	ead Compounds	Manganese Compounds		Methylene Chloride	Nickel Compounds	Polychlorinated bipheny	Quinoline	Tetrachloroethylene	Trichloroethylene	Vinyl Chloride
Chromic Acid Anodizing	OCG												1						_			_	_	7		Ť		\top	4
2.Commercial Sterilization Facilities	PPSG								1							4		\dashv	\top	\top		+	\top	+				+	\dashv
3.Cremation (Human and Animal) OSWI	CG								0.1		0								十	\top		3	\top	0				\top	\dashv
Cyclic Crude & Intermediate prod.	OCG						0	0.4		0		0	0 0		2	0	0	\dashv	3	0	\dashv		0	0		93		+	\dashv
5.Decorative Chromium Electroplating	OCG												3						\top	\dashv		+	\pm	\pm				+	\dashv
6.Dry Cleaning Facilities	CG												+-						十	\top		\pm	\top	\pm			94	+	\dashv
7. Flexible Polyurethane Foam Fabrication Operations	OCG																		\top	\top			23	\pm				\top	\dashv
8. Gas Distribution Stage I	WCPG						_			36					2			\top	\top	\dashv	\neg	+	_	+				+	\dashv
9. Halogenated Solvent Cleaners	CCPG																		十	\top		\pm	12	\pm			4	85	\dashv
10. Hard Chromium Electroplating	OCG												42						\top	\top		\pm	_	\pm				_	\dashv
11. Hospital Sterilizers	PPSG															87		\neg	十	\neg		\top	\top	\top				\top	\dashv
12. Industrial Boilers	CG					15	0 :	2	10	0	8	1	1	2.9	0		- 1	\neg	\top	1	26	1		10	5			\top	\dashv
13. Industrial Inorganic Chemical Manufacturing	MICG				82		0		7	0		1	0 3				0		25	1	4	1	0	4				\top	\neg
14. Industrial Organic Chemical Manufacturing	OCG			7.8			1	0.8	3 0	0		1	0		7	1	0		51	0	0	0	0	0				0	\neg
15. Institutional Commercial Heating	CG					6	2	3	21	0	68	4	1	0.7	0		2			1	8	2	- 1	41				\top	\neg
16. Medical Waste Incinerators	CG								1			9	0	73			0			8	0	57	\top	0				\top	\neg
17. Mercury Cell Chlor-Alkali Plants	MG																					15	\top	\top				\top	\neg
18.Municipal Landfills	WCPG	94	92			0		78	3	2			1		53							\top	6	\top	1		1	3	83
19. Municipal Waste Combustors	CG								0.4			1	0	10			0		T	1	0	3	\neg	0				\top	
20. Oil & Natural Gas Production	WCPG									48									\top	\neg		\top	\top	\top				\top	\neg
21. Paint Strippers	PPSG	0.1																				- 1	40	\top				\top	\neg
22. Plastic Materials and Resins Manufacturing	OCG			17			0	1.6	6	0					15		0		1	0		\top	0	\top				\top	2
23. Public Owned Treatment Works	WCPG	0.1	3	1.6			2 9	1 5.5	5	4		8	38			1	0					\top	2	\top			0	0	0
24. Secondary Lead Smelting	MG	0		41	2.5	0	0 :	3	2	0		17	0	0.1			0		寸	2	0	\top	\top	\top				\top	
25. Stationary ICE	CG					34 8	36		0.4	4	5	0					92	\neg	\top	0	0	0	\top	十				十	\neg
26. Synthetic Rubber Manufacturing	OCG			18															\dashv	\dashv		\top	\top	\top				十	
27. Portland Cement	MICG								1		1	1		- 1					\neg	1		\top		\top	2			\top	
28. Hazardous Waste Incineration	OSWER								19			15	1	2						7		5			65				
29. Aluminum Foundries (Castings)	MICG										12	3								1	1			1					
Total percentage from categories above		94	95	86	0.5	56 9	14 0	9 86				- 4	9 51			93	00	0	20		38		84 !	56	73		99	00	Q.E.

November Docket Ar	ea Source	Cate	gorie	s wit	th Pe	rcer	ntag	je C	ontri	butio	on to	eac	h of	the	30 ı	urbar	n HA	P											11/	/22/2002				
Source Category Name	Group Responsible	1,12,2-Tetrachloroethan	1,2-Dichlo ropropane	1,3 Butadiene	1,3-Dich to ropropene	7-PAH	Acetaldehyde	Acrolein	Acrylonitrile	Arsenic Compounds	Benzene	Beryllium Compounds	Cadmium Compounds	Chloroform	Chromium Compounds	Dioxins (2,3,7,8-TCDD)	Ethylene Dichloride	Ethylene Oxide	Formaldehyde	Hexachlorobenzene	Hydrazine	Lead Compounds	Manganese Compounds	Mercury Compounds	Methylene Chloride	Nickel Compounds	Polychlorinated biphenyl	Quinoline	Tetrachloroethylene	Trichloroethylene	Vinyl Chloride			
Acrylic Fibers/modacrylic Fibers Production	PPSG								10		T				\neg			T		T		T	\neg			$\overline{}$				\Box				
Agricultural Chemicals and Pesticides Manufacturing	OCG				13	\neg				10					0					99	13	0	3			\neg				\neg				
Autobody Refinishing Paint Shops	CCPG/OC	G													╛					\top		6	╛							\Box				
Primary Nonferrous Metals- Zinc, Cadmium and Beryllium - 3 of										1.5			8									2	1			0								
Flexible Poly Foam Production	OCG																								6									
Iron Foundries	MG														1							2	5			1				\Box				
Lead Acid Battery Manufacture	MG												1									9				0								
MON	OCG		5	11	2		2		1		0			0			3				4	0	0		0	0		7.1			1			
Pharmaceutical Production	OCG													3	\Box		10						0		1									
Plating and Polishing	CCPG												4		4							0	0		0	3			0	1				
Polyvinyl Chloride and Copolymers Production	OCG																													\Box	12			
Pressed and Blown Glass and Glassware Manufacturing	MICG									9			1		0							8	0			0								
Secondary Copper Smelting	MG												8			0.6						9												
Secondary Nonferrous Metals	MG									1.7					0							5	0	1		2								
Sewage Sludge Incineration	MG	6				1			3	2			11	0	1	5						7	0	3		1	18				1			
Stainless and Nonstainless Steel Manufacturing EAF	MG									1.5			1		3							3	11	0		2				0				
Steel Foundries	MG														6							0	5			3								
Wood Preserving	MG									10					0	4									0									
Total percentage from all source categories		100	100	97	100	56	93	99	100	98	95	100	89	93	66	100	91	93	96 9	9 9	7	/5	64	91	91	67	91	100	99	89	98			

November Docket A	rea Source	Cate	gorie	s wit	h Pe	rcen	tage	e Co	ontril	butio	on to	eac	h of	the	30 ι	urbar	n HA	P											11/	12212	002
Source Category Name	Group Responsible	1,12,2-Tetrachloroethan	1,2-Dichlo ropropane	1,3 Butadiene	1,3-Dich bropropene	7-PAH	Acetaldehyde	Acrolein	Acrylonitrile	Arsenic Compounds	Benzene	Benyllium Compounds	Cadmium Compounds	Chloroform	Chromium Compounds	Dioxins (2,3,7,8-TCDD)	Ethylene Dichloride	Ethylene Oxide	Formaldehyde	Hexachlorobenzene	Hydrazine	Lead Compounds	Manganese Compounds	Mercury Compounds	Methylene Chloride	Nickel Compounds	Polychlorinated biphenyl	Quinoline	Tetrachloroethylene	Trichloroethylene	Vinyl Chloride
1. Chemical Manufacturing: Chromium Compounds	MG														3																
2. Chemical Preparations	MICG					П		П			\Box				1		2	1	П	П	1	0	1	\neg		1				\Box	\Box
4.Clay Products manufacturing - 2 categories	MICG														0							3	1			0					
Industrial Machinery and Equipment - Finishing Operations	- 3 categori	es													2							0	3			3					
6.Copper Foundries	MG																					2	0			0					
7. Electrical and Electronic Equipment - Finishing Op 2 categ	ories														2								1			3				0	
8: Ferroalloys Production: Ferromanganese and Silicomangan	MG					2									1								4			1					
9.Fabricated Metal Products, nec	MG												1		0							1	1			1				0	
10.Fabricated Plate Work	MG														4								2			4					
11.Fabricated Structural Metal Manufacturing	MG														2								3			2					
12.Heating Equipment, Except Electric	MG														1								1			1					
13.Inorganic Pigments Manufacturing	MICG														1							3	2			0				\Box	
14.Iron and Steel Forging	MG					П		П			П		П		1				П			П	1			3				П	\blacksquare
15.Nonferrous Foundries, nec	MG														0							1				0				\Box	
16.Paints and Allied Products Manufacturing	MICG					П		П			0		1		2				П			2	П	\Box	1	0				П	\blacksquare
17.Plastic Parts and Products (Surface Coating)	CCPG													1	2							2	1		1	1				1	
18.Prepared Feeds Man	MICG									0.8					0			0					4								
19.Primary Copper (not subject to MACT)	MG						T			1.5			2		0					T		1				0					
20.Primary Metal Products Man	MG												0		2							0	4	\neg		2				0	
21.Valves and Pipe Fittings	MG												1		0							0				1				0	
22. Carbon Black Production	OCG					18		T			\Box		П		П								П			\Box					
23. Asphalt Processing and Asphalt Roofing Manufacturing	MICG					17																									
																															\Box
Total all above		100	100	97	100	93 5	93 9	99	100	100	95	100	93	94 9	90	100	93	95	96	99	99	90	90	91	93	90	91	100	99	91	38

CAA 112 (R) PREVENTION OF ACCIDENTAL RELEASES

- At Least 100 substances known to cause death, injury, environmental damage
- Created Chemical Safety and Hazard Investigation Board

CAA 112 (R) PREVENTION OF ACCIDENTAL RELEASES

California Program is equivalent with additional chemicals listed

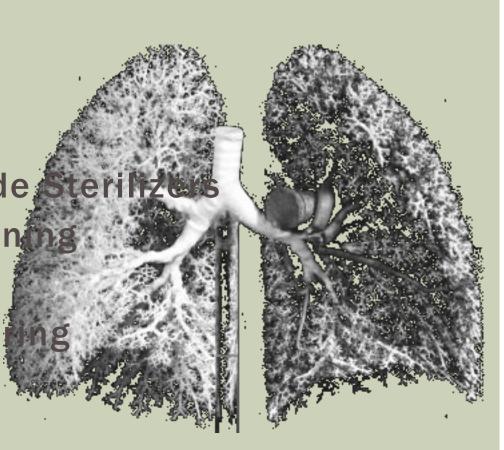
Requires a riskmanagement plan forTitle V permits

MACT TIMELINE

Compliance Date:

- Existing Sources 36 months (48 in some cases)
- New Sources Compliance date or upon Startup
- Demonstrate compliance within 6 months of startup

MACT TIMELINE



Compliance Date:

- Boilers
 - -Effective date: Nov. 12, 2004
 - -Compliance date (New) Nov.12, 2004 or on Startup
 - -Compliance date (existing) Nov.13, 2007

RESIDUAL RISK STANDARDS

- 8 Years after setting MACT
- Examples of completed reviews
 - Dry Cleaning
 - Gasoline Distribution
 - Commercial Ethylene Oxide Steril
 - Halogenated Solvent Cleaning
 - Industrial Cooling Towers
 - Magnetic Tape Manufactui

MACT LAYOUT

Summary

- Effective Date
- Contact info
- Supplemental Info
 - Federal Register
 - Web page

I - INTRODUCTION

- Authority
 - Statute
- Affected Processes
 - Who is effected

II - FINAL RULE

- Source Categories Affected
- Pollutants Regulated
- Requirements
- Compliance
 - -Date of Compliance
 - Demonstration of compliance

III - IMPACT

- Environmental
 - Air, Water, Solid and Waste
- Energy
 - increase or decrease
- Economic

MACT LAYOUT

- IV Summary of Changes
- V Response to Major comments
- The Regulation

INTERNET RESOURCES

www.epa.gov/ttn/atw/eparules.html

https://www3.epa.gov/ttn/atw/area/arearules.html#imp

http://www.combustionportal.org/

https://www.tceq.texas.gov/permitting/air/rules/federal/fedhp

https://www.govinfo.gov/help/cfr

https://ecfr.io/Title-40/

LEARN THE ISSUES | SCIENCE & TECHNOLOGY | LAWS & REGULATIONS

ABOUT EPA

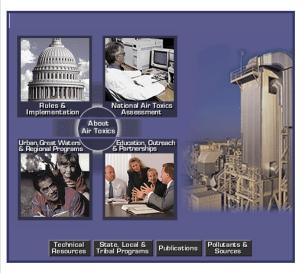
Advanced Search

A-Z Index

SEARCH

TTNWeb - Technology Transfer Network

U.S. ENVIRONMENTAL PROTECTION AGENCY


TTN Home ATW Home

National-Scale Air **Toxics Assessment Risk Studies Education & Outreach About Air Toxics Pollutants & Sources** State, Local, Tribal Resources **Publications** Contacts **Technical Resources**

Technology Transfer Network Air Toxics Web Site

Contact Us Search: O All EPA This Area

You are here: EPA Home » Air & Radiation » TTN Web - Technology Transfer Network » Air Toxics Web site » Air Toxics Website

Rules & Implementation | NATA | About Air Toxics | Risk Studies | Education & Outreach | Technical Resources | State, Local & Tribal Programs | Publications | Program Contacts | Pollutants &

EPA Home | Privacy and Security Notice | Contact Us

http://www.epa.gov/ttn/atw/ Print As-Is

Last updated on Thursday, December 27, 2012

EPA Home | Privacy and Security Notice | Contact Us Last updated on Wednesday, May 23, 2012

TTN Home

ATW Home

Risk Studies
Education & Outreach

Publications Contacts

Implementation
National-Scale Air

About Air Toxics

Pollutants & Sources State, Local, Tribal Resources

Technical Resources

Toxics Assessment

Rules &

Technology Transfer Network Air Toxics Web Site

Contact Us Search: O All EPA This Area

Share

You are here: EPA Home » Air & Radiation » TTN Web - Technology Transfer Network » Air Toxics Web site » Rules and Implementation

Rules and Implementation

The Clean Air Act requires EPA to regulate emissions of toxic air pollutants from a published list of industrial sources referred to as "source categories." As required under the Act, EPA has developed a list of source categories that must meet control technology requirements for these toxic air pollutants. The EPA is required to develop regulations (also known as rules or standards) for all industries that emit one or more of the pollutants in significant quantities.

NOTICE announcing that EPA has completed the emission standards required by sections 112(c)(3) and (k)(3)(B) and 112(c)(6) of the Clean Air Act (CAA).

See Federal Register, March 21, 2011 (page 15308)

National Emission Standards for Hazardous Air Pollutants Information

National Emission Standards for Hazardous Air Pollutants Rules

Rule Information

Residual Risk/Technology Rules

Area Source General Information and Implementation Tools (CAA, Section 112(k))

Solid Waste Rules (Sections 129/111(d) Rules)

- Solid Waste Combustion
- Sewage Sludge Incinerator rule (SSI)
- Hospital/Medical/Infectious Waste Incineration (HMIWI)
- . Municipal Waste Combustors (MWC) Large Units
- . Municipal Waste Combustors -Small Units
- · Commercial/ Industrial Waste Incinerators (CIWI)
- Other Solid Waste Incinerators

Selected New Source Performance Standards (NSPS) [these are criteria pollutant regulations]

Note that the General Provisions apply.

- Archived Clean Air Mercury Rule
- . Boilers (Steam Generating Units)
- <u>Diesel Engines (Compression Ignition Internal Combustion Engines)</u>
- Petroleum Refineries
- Portland Cement
- SOCMI Wastewater
- Municipal Solid Waste Landfills
- . Stationary Combustion Turbines
- · Stationary Spark Ignition Internal Combustion Engines

