Course: 435 Day: 1 Lesson Time: 480 minutes Prepared By: C2 Technologies, Inc Date: September 26, 2008

Student Manual Coverage:

Chapter 1. An Introduction to Atmospheric Sampling Chapter 2. Basic Gas Properties and Mathematical Manipulations Chapter 3. Air Measuring Instruments

Learning Content:

Registration & Welcome

Pretest

BREAK

Course goal and logistic information

Chapter 1. An Introduction to Atmospheric Sampling

Chapter 2. Basic Gas Properties and Mathematical Manipulations

- 2.1 Temperature
 - The Fahrenheit and Celsius Scales
 - Absolute Temperature
- 2.2 Pressure
 - Definition of Pressure
 - Barometric Pressure
 - Torricelli Barometer
 - Fortin Barometer
 - Aneroid Barometer
 - Pressure Transducers
 - Gauge Pressure
 - Absolute Pressure
 - The Concept of Pressure-Head
 - Dalton's Law of Partial Pressure
- 2.3 The Ideal Gas Laws
 - Boyle's Law
 - Charles' Law
 - The Law for Ideal Gases
 - Molar Volume ()
- 2.4 Gas Density
 - Standard Conditions for Atmospheric Sampling
 - Origin and Definition of Viscosity
 - Kinematic Viscosity
 - Liquid Viscosity versus Gas Viscosity
 - Determination of Viscosity of Gases

2.5 Reynolds' Number

2.6 Summary of Useful Equations

- Temperature
- Pressure
- Ideal Gas Law
- Gas Density
- Viscosity,
- Reynolds' Number
- 2.7 Units of Measurements
 - Recommended Units
 - Conversion Problems
 - References

LUNCH

Chapter 3. Air Measuring Instruments

- 3.1 Introduction to Air Movers
 - Relationship of Air Movers to Other Sampling System Components
 - Air Mover Classification
- 3.2 Air Mover Selection Criteria
 - Pollutant Concentration and Sampling Time
 - Sampling Rate Required
 - Physical and Chemical Nature of Air to be Sampled
 - Portability of Air Mover
 - Air Mover Noise
 - Air Mover Maintenance
 - Resistance
 - Constant Flow Rate
- 3.3 Pumps
 - Definition and Classification
 - Positive Displacement Pumps
 - Centrifugal Pumps
 - "Driving Forces" for Pumps
 - Characteristic Curves
 - Selecting a Pump
 - Pump Gauges

BREAK

3.4 Ejectors

- Principle of Operation
- Driving Forces
- Sampling Use of Ejectors
- 3.5 Liquid Displacers
 - Principle of Operation
 - Sampling by Use of Liquid Displacement

Safety Briefing & Laboratory Assignments

Laboratory Session I (Calibration of Wet test Meter)

Adjourn

Optional Content:

Class Work:

Homework:

Problem Sets:

Day 2:

Course: 435 Day: 2 Lesson Time: 480 minutes Prepared By: C2 Technologies, Inc Date: September 26, 2008

Chapter 3. Air Measuring Instruments(Cont') Chapter 6. Gaseous Sampling Chapter 7. Standard Methods for Criteria Pollutants Chapter 4. Particulate Matter Sampling

Learning Content:

Chapter 3. Air Measuring Instruments(Cont')

3.6 Air Displacers

- Evacuated Flasks: Principle of Operation
- Sampling by Use of Evacuated Flasks
- "Plastic" Bags: Principle of Operation
- Sampling by Use of "Plastic" Bags

3.7 Flow Rate Control

- Control by Diversion
- Resistance Control
- Driving Force Control
- 3.8 Flow Rate for Sampling
 - Need for Control
 - Control Mechanisms
- 3.9 Air Measuring Instruments
 - Introduction
 - Types of Air Measuring Devices
 - Calibration
- 3.10 Volume Meters
 - The Spirometer (or "Bell Prover") Primary Standard
 - Displacement Bottle Technique Primary Standard
 - Frictionless Pistons Primary Standard
 - Automated Bubble Flowmeters
 - Automated Dry-Piston Flowmeters
 - Wet Test Meter (WTM) Secondary Standard
 - Roots Meter Secondary Standard
 - Dry Test Meter Secondary Standard

Chapter 6. Gaseous Sampling

6.1 Principles of Absorption

- Introduction
- Types of Absorption
- Physical Absorption
- Chemical Absorption

- 6.2 Collection Efficiency
 - Factors Affecting Collection Efficiency
 - Absorber Characteristics
 - Chemical Characteristics
 - Physical Characteristics
- 6.3 Determination of Collection Efficiency
 - Absorption Devices
 - Fritted-glass Absorbers
 - Impingers
 - Summary
 - Current Applications of Absorption in Atmospheric Sampling
- 6.4 Principles of Adsorption
 - Basic Principles
 - Types of Adsorption
 - Physical Adsorption
 - Chemical Adsorption
 - Variables Affecting Gas Adsorption
 - Adsorption Isotherms
 - Types of Adsorption Isotherms
 - Adsorbate Characteristics
 - Gas Liquefaction
 - Adsorbate Size
 - Gas Concentration
 - Presence of Other Gases
 - Adsorbent Characteristics
 - Surface Area
 - Pore Size
 - Chemical Nature
 - Typical Adsorbents
 - Carbon
 - Molecular Sieve
 - Adsorption Losses in Air Sampling
 - Current Applications of Adsorption in Atmospheric Sampling
 - Summary
- 6.5 Selection and Performance of Wet Collector Media
 - Introduction
 - Absorber Design/Selection Considerations
 - Retention Characteristics of Absorbant (Solvent)
 - Retention of Gases and Vapor by Chemical Reaction
 - Retention of Particulate Matter
- 6.6 Principles of Grab Sampling
 - Introduction
 - Evacuated Containers
 - Air Displacement or Purging
 - Liquid Displacement
 - Inflation "Plastic Bag" Sampling
 - Syringes
 - Grab Sampling Techniques
 - Current Applications of "Whole Air" (Grab & Integrated) Sampling in Ambient Air

6.7 Principles of Cryogenic (Freezeout) Sampling

- Introduction
- Concept
- Equipment
- Single-Stage Units
- Multistage Units
- Efficiency
- Current Applications of Cryogenic "Freezeout" Sampling in Ambient Air
- Summary

BREAK

Chapter 7. Standard Methods for Criteria Pollutants

7.1 Reference Method and Equivalent Method

- Criteria Pollutants and Measurement Methods
- Particulate Matter
- PM2.5
- PM10
- Ozone
- Carbon Monoxide
- Nitrogen Dioxide
- Sulfur Dioxide
- Lead

LUNCH

Chapter 4. Particulate Matter Sampling

- 4.1 Introduction
 - Principles of Inertial Collection
- 4.2 Inertial Sampling Devices
 - Impaction Devices
 - Impingement Devices
 - Centrifugal Separation Devices
 - Virtual Impactors-Dichotomous Sampler
- 4.3 Collection Efficiency and Penetration Efficiency of Inertial Sampling Devices
 - Definition of Collection Efficiency and Penetration Efficiency
 - Impactor Performance Characteristics
 - Properties of Aerosols Affecting Inertial Collection Efficiency
 - Properties of the Collecting Device Influencing Collection Efficiency
- 4.4 Limitations and Sources of Error in Inertial Collection
 - Inherent Errors in Sample Collection
 - Errors Associated with the Calibration of Collection Devices
 - Errors in Sample Analysis
 - Size-Selective Inlets and Devices for Aerosol Sampling
- 4.5 Filtration Sampling
 - Introduction
 - General Considerations
 - The Theory of Filtration
 - Collection Efficiency of Filters
 - Characteristics of Filter Media
 - Sample Problems

4.6 Gravitational Sampling

- Dustfall Bucket or Jar
- Precipitation Collectors
- 4.7 Electrostatic Precipitators
 - Introduction
 - Principles of Electrostatic Precipitation
 - Collection Efficiency
 - Specific Applications
- 4.8 Thermal Precipitators
 - Introduction
 - Collection Efficiency and Deposition Pattern
 - Advantages and Disadvantages of Thermal Precipitators
- 4.9 Summary

Laboratory Session II (Gas Measuring Devices & PM Samplers)

ADJOURN

Optional Content:

Class Work:

Homework:

Problem Sets:

Course: 435 Day: 3 Lesson Time: 480 minutes Prepared By: C2 Technologies, Inc Date: September 26, 2008

Student Manual Coverage:

Chapter 5: Methodologies and Instrumentation for Particulate Matter Sampling

Learning Content:

Review and Q&A Session

Chapter 5: Methodologies and Instrumentation for Particulate Matter Sampling

5.1 Introduction

- 5.2 High-Volume Sampling for Suspended Particulate Matter (SPM) and Air Toxics
- 5.3 High-Volume Air Sampling
 - Introduction
 - Development of the High-Volume Sampler
 - Sampler Shelter Combination
 - Filter Media for High-Volume Sampler
 - Precautions in Filter Handling
 - Calibration
 - U.S. EPA High Volume Sampling Procedure for TSP (Appendix B of 40 CFR 50)
 - Sample Problems
 - Problem 1: High-Volume Sampling
 - Problem 2: High-Volume Sampling
 - Problem 3: High-Volume Sampling
 - Analysis of High-Volume Filters
 - Sampling Accuracy and Precision
 - Accuracy
 - Precision
 - Maintenance
 - Summary
- 5.4 FRM for the Determination of Particulate Matter as PM10
 - Applicability
 - Principle
 - Range
 - Precision
 - Accuracy
 - Potential Sources of Error
 - PM10 Sampler Apparatus
 - Filter Media
 - Calculations
 - Sample Problems
 - Problem 1: PM10 Sampling
 - Problem 2: PM10 Sampling

BREAK

5.5 FRM and FEM for the Determination of Fine Particulate Matter as PM2.5

- Reference Methods for PM2.5 (FRM)
- Designated Methods for PM2.5
- Equivalent Methods for PM2.5 (FEM)
- Limitations of PM2.5 Reference and Class I Equivalent Methods
- Approved Regional Methods (ARMs)
- Calculations
- Sample Problems
- Problem 1: PM2.5 Sampling
- Problem 2: PM2.5 Sampling
- 5.6 FRM and FEM for the Determination of Coarse Particles (PM10-PM2.5)
- 5.7 PM2.5 Speciation Sampling
- 5.8 Continuous in situ Monitoring for Particulate Matter
 - National Core (NCore)
 - State and Local Air Monitoring Stations (SLAMS)
- 5.9 Automated Federal Equivalent Monitors
 - Beta Attenuation Monitor (BAM)
 - Tapering Element Oscillating Microbalance (TEOM®)
- 5.10 Other Automated PM Methods
 - Mass and Mass Equivalent
 - Piezoelectric Microbalance
 - Pressure Drop Tape Sampler (CAMMS)
 - Visible Light Scattering
 - Nephelometer
 - Optical Particle Counter (OPC)
 - Condensation Nuclei Counter (CNC)
 - Aerodynamic Particle Sizer (APS)
 - Light Detection And Ranging (LIDAR)
 - Visible Light Absorption
 - Aethalometer and Particle Soot/Absorption Photometers
 - Photoacoustic Spectroscopy
 - Electrical Mobility
 - Electrical Aerosol Analyzer (EAA)
 - Differential Mobility Particle Sizer (DMPS)
 - Chemical Components
 - Single Particle Mass Spectrometers
 - Carbon Analyzer
 - Sulfur Analyzer
 - Nitrate Analyzer
 - Multi-Elemental Analyzer
 - Streaker
 - DRUM

LUNCH

Laboratory Session III (Gas Measuring Devices & PM Samplers)

ADJOURN

Optional Content:

Class Work:

Homework:

Problem Sets:

Course: 435 Day: 4 Lesson Time: 480 minutes Prepared By: C2 Technologies, Inc Date: September 26, 2008

Student Manual Coverage:

Appendix A. Statistical Techniques Employed in Atmospheric Sampling Appendix G. Significant Figures and Rounding Off Chapter 8. Introduction to Ambient Air Sampling for Air Toxics

Learning Content:

Course goal and logistic information

Review and Q&A Session

Quality Assurance/Quality Control

Appendix A. Statistical Techniques Employed in Atmospheric Sampling

A.1 Introduction

- A.2 The Data Quality Objectives (DQO) Process
 - The Seven Steps of the DQO Process
 - Outputs of the DQO Process
- A.3 Data Collection Design
 - Data Plotting
- A.4 Graphical Analysis
 - Frequency Tables
 - The Frequency Polygon
 - The Histogram
 - The Cumulative Frequency Distribution
 - Distribution of Data
 - Transformation of Data
 - The Logarithmic Transformation
 - Probability Graph Paper
 - Least-Square Linear Regression
- A.5 Measures of Central Tendency
 - Arithmetic Average, or Mean
 - Median
 - Geometric Mean
- A.6 Measures of Dispersion
 - The Range
 - Standard Deviation
 - Coefficient of Variation
 - Standard Geometric Deviation
- A.7 Distribution Curves
 - The Normal Distribution
 - Lognormal Distributions

Quality Assurance/Quality Control (cont)

Appendix G. Significant Figures and Rounding Off

- G.1 Working with Numbers
 - Intro Problems
- G.2 Approximate Numbers
 - Rule 1 (General)
 - Rule 2 (General)
- G.3 Rounding Approximate Numbers
 - Rule for Rounding Approximate Numbers
- G.4 Adding and Subtracting Approximate Numbers
- Truncating Approximate Numbers Following Addition or Subtraction
- G.5 Multiplying and Dividing Approximate Numbers
 - Significant Digits
 - Truncating Approximate Numbers Following Multiplication or Division
- G.6 Reasonability
 - Rule to Meet the Conditions of Reasonability
- G.7 Practice Exercises
- G.8 Answers to Intro Problems
- G.9 Answers to Practice Exercises

BREAK

Chapter 8. Introduction to Ambient Air Sampling for Air Toxics 8.1 Introduction

- What are Toxic Air Pollutants?
- Clean Air Act of 1990
- Timeline for Air Toxics Monitoring

8.2 What is Risk?

- What is a Risk Assessment?
- Hazard Identification
- Weight of Evidence for Health Problems of Concern
- Exposure Assessment
- Dose-Response Assessment
- Dose-Response Relationships
- Risk Characterization
- 8.3 Introduction to Air Toxics Methods
 - Monitoring Program Goal and Objectives
 - Description of the Methods
 - Compendium Method TO-11A
 - Compendium Method TO-13A
 - Compendium Method TO-15A
 - Compendium Method IO-3.5

LUNCH

Laboratory Session IV (Gas Measuring Devices & PM Samplers)

ADJOURN

Optional Content:

Class Work:

Homework:

Problem Sets:

Course: 435 Day: 5 Lesson Time: 180 minutes Prepared By: C2 Technologies, Inc Date: September 26, 2008

Student Manual Coverage:

Learning Content:

Course goal and logistic information

Complete Laboratory Exercises and Reports

BREAK

Review Session

Post Test

Course Critique

ADJOURN

Optional Content:

Class Work:

Homework:

Problem Sets: